Although turmeric (Curcuma longa; an Indian spice) has been described in Ayurveda, as a treatment for inflammatory diseases and is referred by different names in different cultures, the active principle called curcumin or diferuloylmethane, a yellow pigment present in turmeric (curry powder) has been shown to exhibit numerous activities. Extensive research over the last half century has revealed several important functions of curcumin. It binds to a variety of proteins and inhibits the activity of various kinases. By modulating the activation of various transcription factors, curcumin regulates the expression of inflammatory enzymes, cytokines, adhesion molecules, and cell survival proteins. Curcumin also downregulates cyclin D1, cyclin E and MDM2; and upregulates p21, p27, and p53. Various preclinical cell culture and animal studies suggest that curcumin has potential as an antiproliferative, anti-invasive, and antiangiogenic agent; as a mediator of chemoresistance and radioresistance; as a chemopreventive agent; and as a therapeutic agent in wound healing, diabetes, Alzheimer disease, Parkinson disease, cardiovascular disease, pulmonary disease, and arthritis. Pilot phase I clinical trials have shown curcumin to be safe even when consumed at a daily dose of 12g for 3 months. Other clinical trials suggest a potential therapeutic role for curcumin in diseases such as familial adenomatous polyposis, inflammatory bowel disease, ulcerative colitis, colon cancer, pancreatic cancer, hypercholesteremia, atherosclerosis, pancreatitis, psoriasis, chronic anterior uveitis and arthritis. Thus, curcumin, a spice once relegated to the kitchen shelf, has moved into the clinic and may prove to be "Curecumin".
Source: Goel A, Kunnumakkara AB, Aggarwal BB.
Enrichment of CSCs, remarkable activation of tumor-promoting factors and EMT in high density co-culture highlights that the crosstalk in the tumor microenvironment plays an essential role in tumor development and progression, and this interaction appears to be mediated at least in part by TGF-β and EMT. Modulation of this synergistic crosstalk by curcumin might be a potential therapy for CRC and suppress metastasis.
Source: Buhrmann C, Kraehe P, Lueders C, Shayan P, Goel A, et al. (2014) Curcumin Suppresses Crosstalk between Colon Cancer Stem Cells and Stromal Fibroblasts in the Tumor Microenvironment: Potential Role of EMT. PLoS ONE 9(9): e107514. doi:10.1371/journal.pone.0107514
Extensive research over the past half century has shown that curcumin (diferuloylmethane), a component of the golden spice turmeric (Curcuma longa), can modulate multiple cell signaling pathways. Extensive clinical trials over the past quarter century have addressed the pharmacokinetics, safety, and efficacy of this nutraceutical against numerous diseases in humans. Some promising effects have been observed in patients with various pro-inflammatory diseases including cancer, cardiovascular disease, arthritis, uveitis, ulcerative proctitis, Crohn’s disease, ulcerative colitis, irritable bowel disease, tropical pancreatitis, peptic ulcer, gastric ulcer, idiopathic orbital inflammatory pseudotumor, oral lichen planus, gastric inflammation, vitiligo, psoriasis, acute coronary syndrome, atherosclerosis, diabetes, diabetic nephropathy, diabetic microangiopathy, lupus nephritis, renal conditions, acquired immunodeficiency syndrome, β-thalassemia, biliary dyskinesia, Dejerine-Sottas disease, cholecystitis, and chronic bacterial prostatitis.
Source:Subash C. Gupta, Sridevi Patchva, and Bharat B. Aggarwal
In a first-of-its-kind study, curcumin (BCM-95®) was found to decrease the severity of adverse effects of radiation therapy on the urinary tract in men with prostate cancer. Urinary problems are the most common side effects of radiation therapy for prostate cancer.
Source: J Hejazi, R Rastmanesh, F Taleban, S Molana and G Ehtejab. A Pilot Clinical Trial of Radioprotective Effects of Curcumin Supplementation in Patients with Prostate Cancer. J Cancer Sci Ther. 2013, 5.10.
Here we for the first time show the effect of curcumin (BCM-95) on cancer stem cells, which is Achilles heel for the failure of cancer chemotherapy in patients. We have shown that curcumin (BCM-95) can effectively kill cancer stem cells and hence improve sensitization of tumor cells to chemotherapy. In other words, these tumor cells become so resistant to chemotherapy that they can handle more than 100 times the dose of super toxic chemotherapy and still survive; but once treated with a super low dose of curcumin (BCM-95), we can effectively kill them by re-sensitizing these cells to the toxic effects of chemotherapy, help minimize toxicity to normal flora, and make these patients feel better.
Source: Shakibaei M, Buhrmann C, Kraehe P, Shayan P, Lueders C, et al. (2014) Curcumin Chemosensitizes 5-Fluorouracil Resistant MMR-Deficient Human Colon Cancer Cells in High Density Cultures. PLoS ONE 9(1): e85397. doi:10.1371/journal.pone.0085397
The reprogramming of cellular metabolism in cancer cells is a well-documented effect. It has previously been shown that common oncogene expression can induce aerobic glycolysis in cancer cells. However, the direct effect of an inflammatory microenvironment on cancer cell metabolism is not known. Here, we illustrate that treatment of nonmalignant (MCF-10a) and malignant (MCF-7) breast epithelial cells with low-level (10 ng/ml) tumor necrosis factor alpha (TNF-α) significantly increased glycolytic reliance, lactate export and expression of the glucose transporter 1 (GLUT1). TNF-α decreased total mitochondrial content; however, oxygen consumption rate was not significantly altered, suggesting that overall mitochondrial function was increased. Upon glucose starvation, MCF7 cells treated with TNF-α demonstrated significantly lower viability than nontreated cells. Interestingly, these properties can be partially reversed by coincubation with the anti-inflammatory agent curcumin in a dose-dependent manner. This work demonstrates that aerobic glycolysis can be directly induced by an inflammatory microenvironment independent of additional genetic mutations and signals from adjacent cells. Furthermore, we have identified that a natural dietary compound can reverse this effect.
Source: Vaughan RA, Garcia-Smith R, Dorsey J, Griffith JK, Bisoffi M, Trujillo KA. Int J Cancer. 2013 May 10. doi: 10.1002/ijc.28264.
The aim of this study was to determine the mechanisms of curcumin-induced human breast cancer cell apoptosis. From quantitative image analysis data showing an increase in the percentage of cells with a sub-G0/G1 DNA content, we demonstrated curcumin-induced apoptosis in the breast cancer cell line MCF-7, in which expression of wild-type p53 could be induced. Apoptosis was accompanied by an increase in p53 level as well as its DNA-binding activity followed by Bax expression at the protein level. Further experiments using p53-null MDAH041 cell as well as low and high p53-expressing TR9-7 cell, in which p53 expression is under tight control of tetracycline, established that curcumin induced apoptosis in tumor cells via a p53-dependent pathway in which Bax is the downstream effector of p53. This property of curcumin suggests that this molecule could have a possible therapeutic potential in breast cancer patients.
Source: Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G. FEBS Lett. 2002 Feb 13;512(1-3):334-40.
In our study, we present experimental evidence suggesting that curcumin exerts multiple different suppressive effects on human breast carcinoma cells in vitro. Our experiments demonstrate that curcumin's antiproliferative effects are estrogen dependent in ER (estrogen receptor)-positive MCF-7 cells, being more pronounced in estrogen-containing media and in the presence of exogenous 17-beta estradiol. Curcumin inhibits the expression of ER downstream genes including pS2 and TGF-beta (transforming growth factor) in ER-positive MCF-7 cells, and this inhibition is also dependent on the presence of estrogen. Curcumin also decreases ERE (estrogen responsive element)-CAT activities induced by 17-beta estradiol. In addition, we demonstrate that curcumin exerts strong anti-invasive effects in vitro that are not estrogen dependent in the ER-negative MDA-MB-231 breast cancer cells. These anti-invasive effects appear to be mediated through the downregulation of MMP-2 (matrix metalloproteinase) and the upregulation of TIMP-1 (tissue inhibitor of metalloproteinase), 2 common effector molecules that have been implicated in regulating tumor cell invasion. Our study also demonstrates that curcumin inhibits the transcript levels of 2 major angiogenesis factors VEGF (vascular endothelial growth factor) and b-FGF (basic fibroblast growth factor) mainly in ER-negative MDA-MB-231 cells.
Source: Shao ZM, Shen ZZ, Liu CH, Sartippour MR, Go VL, Heber D, Nguyen M. Int J Cancer. 2002 Mar 10;98(2):234-40.
Activated cancer-associated fibroblasts (CAFs) or myofibroblasts not only facilitate tumor growth and spread but also affect tumor response to therapeutic agents. Therefore, it became clear that efficient therapeutic regimens should also take into account the presence of these supportive cells and inhibit their paracrine effects. To this end, we tested the effect of low concentrations of curcumin, a pharmacologically safe natural product, on patient-derived primary breast CAF cells. We have shown that curcumin treatment upregulates p16(INK4A) and other tumor suppressor proteins while inactivates the JAK2/STAT3 pathway. This reduced the level of alpha-smooth muscle actin (α-SMA) and the migration/invasion abilities of these cells. Furthermore, curcumin suppressed the expression/secretion of stromal cell-derived factor-1 (SDF-1), interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2), MMP-9, and transforming growth factor-β, which impeded their paracrine procarcinogenic potential. Intriguingly, these effects were sustained even after curcumin withdrawal and cell splitting. Therefore, using different markers of senescence [senescence-associated β-galactosidase (SA-β-gal) activity, Ki-67 and Lamin B1 levels, and bromodeoxyuridine incorporation], we have shown that curcumin markedly suppresses Lamin B1 and triggers DNA damage-independent senescence in proliferating but not quiescent breast stromal fibroblasts. Importantly, this curcumin-related senescence was p16(INK4A)-dependent and occurred with no associated inflammatory secretory phenotype. These results indicate the possible inactivation of cancer-associated myofibroblasts and present the first indication that curcumin can trigger DNA damage-independent and safe senescence in stromal fibroblasts.
Source: Hendrayani SF, Al-Khalaf HH, Aboussekhra A. Neoplasia. 2013 Jun;15(6):631-40.
The natural polphenol, curcumin, retards the growth of intestinal adenomas in the Apc(Min+) mouse model of human familial adenomatous polyposis. In other preclinical models, curcumin downregulates the transcription of the enzyme cyclooxygenase-2 (COX-2) and decreases levels of two oxidative DNA adducts, the pyrimidopurinone adduct of deoxyguanosine (M1dG) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG). We have studied COX-2 protein expression and oxidative DNA adduct levels in intestinal adenoma tissue from Apc(Min+) mice to try and differentiate between curcumin's direct pharmacodynamic effects and indirect effects via its inhibition of adenoma growth. Mice received dietary curcumin (0.2%) for 4 or 14 weeks. COX-2 protein, M1dG and 8-oxo-dG levels were measured by Western blot, immunochemical assay and liquid chromatography-mass spectrometry, respectively. In control Apc(Min+) mice, the levels of all three indices measured in adenoma tissue were significantly higher than levels in normal mucosa. Lifetime administration of curcumin reduced COX-2 expression by 66% (P = 0.01), 8-oxo-dG levels by 24% (P < 0.05) and M1dG levels by 39% (P < 0.005). Short-term feeding did not affect total adenoma number or COX-2 expression, but decreased M1dG levels by 43% (P < 0.01). COX-2 protein levels related to adenoma size. These results demonstrate the utility of measuring these oxidative DNA adduct levels to show direct antioxidant effects of dietary curcumin. The effects of long-term dietary curcumin on COX-2 protein levels appear to reflect retardation of adenoma development.
Source: Tunstall RG, Sharma RA, Perkins S, Sale S, Singh R, Farmer PB, Steward WP, Gescher AJ. Eur J Cancer. 2006 Feb;42(3):415-21.
Colorectal cancer is a leading cause of cancer-related morbidity and mortality in the United States. Curcumin, the yellow pigment in turmeric, possesses inhibitory effects on growth of a variety of tumor cells by reducing cell proliferation and inducing apoptosis. Effects of the peroxisome proliferator-activated receptor-gamma (PPARgamma) on stimulating cell differentiation and on inducing cell cycle arrest have attracted attention from the perspective of treatment and prevention of cancer. The aim of this study was to elucidate the mechanisms by which curcumin inhibits colon cancer cell growth. In the present report, we observed that curcumin, in a dose-dependent manner, inhibited the growth of Moser cells, a human colon cancer-derived cell line, and stimulated the trans-activating activity of PPARgamma. Further studies demonstrated that activation of PPARgamma was required for curcumin to inhibit Moser cell growth. Activation of PPARgamma mediated curcumin suppression of the expression of cyclin D1, a critical protein in the cell cycle, in Moser cells. In addition, curcumin blocked EGF signaling by inhibiting EGF receptor (EGFR) tyrosine phosphorylation and suppressing the gene expression of EGFR mediated by activation of PPARgamma. In addition to curcumin reduction of the level of phosphorylated PPARgamma, inhibition of cyclin D1 expression played a major and significant role in curcumin stimulation of PPARgamma activity in Moser cells. Taken together, our results demonstrated for the first time that curcumin activation of PPARgamma inhibited Moser cell growth and mediated the suppression of the gene expression of cyclin D1 and EGFR. These results provided a novel insight into the roles and mechanisms of curcumin in inhibition of colon cancer cell growth and potential therapeutic strategies for treatment of colon cancer.
Source: Chen A, Xu J. Am J Physiol Gastrointest Liver Physiol. 2005 Mar;288(3):G447-56.
The synergistic effect of combination treatment with COX-2 inhibitors and chemotherapy may be another promising therapy regimen in the future treatment of colorectal cancer. Curcumin, a major yellow pigment in turmeric which is used widely all over the world, inhibits the growth of human colon cancer cell line HT-29 significantly and specifically inhibits the expression of COX-2 protein. However, the worldwide exposure of populations to curcumin raised the question of whether this agent would enhance or inhibit the effects of chemotherapy. In this report, we evaluated the growth-inhibitory effect of curcumin and a traditional chemotherapy agent, 5-FU, against the proliferation of a human colon cancer cell line (HT-29). The combination effect was quantitatively determined using the method of median-effect principle and the combination index. The inhibition of COX-2 expression after treatment with the curcumin-5-FU combination was also evaluated by Western blot analysis. The IC(50) value in the HT-29 cells for curcumin was 15.9 +/- 1.96 microM and for 5-FU it was 17.3 +/- 1.85 microM. When curcumin and 5-FU were used concurrently, synergistic inhibition of growth was quantitatively demonstrated. The level of COX-2 protein expression was reduced almost 6-fold after the combination treatment. Our results demonstrate synergism between curcumin and 5-FU at higher doses against the human colon cancer cell line HT-29. This synergism was associated with the decreased expression of COX-2 protein.
Source: Du B, Jiang L, Xia Q, Zhong L. Chemotherapy. 2006;52(1):23-8.
Curcumin (diferuloylmethane), which has been shown to inhibit growth of transformed cells, has no discernible toxicity and achieves high levels in colonic mucosa. 5-fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) remains the backbone of colorectal cancer chemotherapeutics, but with limited success. The present investigation was, therefore, undertaken to examine whether curcumin in combination with conventional chemotherapeutic agent(s)/regimen will be a superior therapeutic strategy for colorectal cancer. Indeed, results of our in vitro studies demonstrated that curcumin together with FOLFOX produced a significantly greater inhibition (p < 0.01) of growth and stimulated apoptosis (p < 0.001) of colon cancer HCT-116 and HT-29 cells than that caused by curcumin, 5-FU, curcumin + 5-FU or FOLFOX. These changes were associated with decreased expression and activation (tyrosine phosphorylation) of EGFR, HER-2, HER-3 (72-100%) and IGF-1R (67%) as well as their downstream effectors such as Akt and cycloxygenase-2 (51-97%). Furthermore, while these agents produced a 2-3-fold increase in the expression of IGF-binding protein-3 (IGFBP-3), curcumin together with FOLFOX caused a 5-fold increase in the same, when compared to controls. This in turn led to increased sequestration of IGF by IGFBP-3 rendering IGF-1 unavailable for binding to and activation of IGF-1R. We conclude that the superior effects of the combination therapy of curcumin and FOLFOX are due to attenuation of EGFRs and IGF-1R signaling pathways. We also suggest that inclusion of curcumin to the conventional chemotherapeutic agent(s)/regimen could be an effective therapeutic strategy for colorectal cancer.
Source: Patel BB, Sengupta R, Qazi S, Vachhani H, Yu Y, Rishi AK, Majumdar AP. Int J Cancer. 2008 Jan 15;122(2):267-73.
During liver fibrogenesis, quiescent HSC (hepatic stellate cells) become active, a transformation that is associated with enhanced cell proliferation and overproduction of ECM (extracellular matrix). Inhibition of cell proliferation and induction of apoptosis are potential strategies to block the activation of HSC for the prevention and treatment of liver fibrosis. Levels of PPARgamma (peroxisome proliferator-activated receptor gamma) are dramatically diminished in parallel with HSC activation. Stimulation of PPARgamma by its agonists inhibits HSC activation in vitro and in vivo. We demonstrated recently that curcumin, the yellow pigment in curry, inhibited HSC activation in vitro, reducing cell proliferation, inducing apoptosis and inhibiting ECM gene expression. Further studies indicated that curcumin induced the gene expression of PPARgamma and stimulated its activity in activated HSC in vitro, which was required for curcumin to inhibit HSC proliferation. The aims of the present study were to evaluate the roles of PPARgamma activation in the induction of apoptosis and suppression of ECM gene expression by curcumin in activated HSC, and to elucidate the underlying mechanisms. Our results demonstrated that blocking PPARgamma activation abrogated the effects of curcumin on the induction of apoptosis and inhibition of the expression of ECM genes in activated HSC in vitro. Further experiments demonstrated that curcumin suppressed the gene expression of TGF-beta (transforming growth factor-beta) receptors and interrupted the TGF-beta signalling pathway in activated HSC, which was mediated by PPARgamma activation. Taken together, our results demonstrate that curcumin stimulated PPARgamma activity in activated HSC in vitro, which was required for curcumin to reduce cell proliferation, induce apoptosis and suppress ECM gene expression. These results provide novel insight into the mechanisms responsible for the inhibition of HSC activation by curcumin. The characteristics of curcumin, which has no adverse health effects, make it a potential candidate for prevention and treatment of hepatic fibrosis.
Source: Zheng S, Chen A. Biochem J. 2004 Nov 15;384(Pt 1):149-57.
Gemcitabine is currently the best treatment available for pancreatic cancer, but the disease develops resistance to the drug over time. Agents that can either enhance the effects of gemcitabine or overcome chemoresistance to the drug are needed for the treatment of pancreatic cancer. Curcumin, a component of turmeric (Curcuma longa), is one such agent that has been shown to suppress the transcription factor nuclear factor-kappaB (NF-kappaB), which is implicated in proliferation, survival, angiogenesis, and chemoresistance. In this study, we investigated whether curcumin can sensitize pancreatic cancer to gemcitabine in vitro and in vivo. In vitro, curcumin inhibited the proliferation of various pancreatic cancer cell lines, potentiated the apoptosis induced by gemcitabine, and inhibited constitutive NF-kappaB activation in the cells. In vivo, tumors from nude mice injected with pancreatic cancer cells and treated with a combination of curcumin and gemcitabine showed significant reductions in volume (P = 0.008 versus control; P = 0.036 versus gemcitabine alone), Ki-67 proliferation index (P = 0.030 versus control), NF-kappaB activation, and expression of NF-kappaB-regulated gene products (cyclin D1, c-myc, Bcl-2, Bcl-xL, cellular inhibitor of apoptosis protein-1, cyclooxygenase-2, matrix metalloproteinase, and vascular endothelial growth factor) compared with tumors from control mice treated with olive oil only. The combination treatment was also highly effective in suppressing angiogenesis as indicated by a decrease in CD31(+) microvessel density (P = 0.018 versus control). Overall, our results suggest that curcumin potentiates the antitumor effects of gemcitabine in pancreatic cancer by suppressing proliferation, angiogenesis, NF-kappaB, and NF-kappaB-regulated gene products.
Source: Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Cancer Res. 2007 Apr 15;67(8):3853-61.
PURPOSE:
Curcumin, a component of turmeric, has been shown to suppress inflammation and angiogenesis largely by inhibiting the transcription factor nuclear factor-kappaB (NF-kappaB). This study evaluates the effects of curcumin on ovarian cancer growth using an orthotopic murine model of ovarian cancer.
EXPERIMENTAL DESIGN:
In vitro and in vivo experiments of curcumin with and without docetaxel were done using human ovarian cancer cell lines SKOV3ip1, HeyA8, and HeyA8-MDR in athymic mice. NF-kappaB modulation was ascertained using electrophoretic mobility shift assay. Evaluation of angiogenic cytokines, cellular proliferation (proliferating cell nuclear antigen), angiogenesis (CD31), and apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) was done using immunohistochemical analyses.
RESULTS:
Curcumin inhibited inducible NF-kappaB activation and suppressed proliferation in vitro. In vivo dose-finding experiments revealed that 500 mg/kg orally was the optimal dose needed to suppress NF-kappaB and signal transducers and activators of transcription 3 activation and decrease angiogenic cytokine expression. In the SKOV3ip1 and HeyA8 in vivo models, curcumin alone resulted in 49% (P = 0.08) and 55% (P = 0.01) reductions in mean tumor growth compared with controls, whereas when combined with docetaxel elicited 96% (P < 0.001) and 77% reductions in mean tumor growth compared with controls. In mice with multidrug-resistant HeyA8-MDR tumors, treatment with curcumin alone and combined with docetaxel resulted in significant 47% and 58% reductions in tumor growth, respectively (P = 0.05). In SKOV3ip1 and HeyA8 tumors, curcumin alone and with docetaxel decreased both proliferation (P < 0.001) and microvessel density (P < 0.001) and increased tumor cell apoptosis (P < 0.05).
CONCLUSIONS:
Based on significant efficacy in preclinical models, curcumin-based therapies may be attractive in patients with ovarian carcinoma.
Source: Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, Kamat AA, Spannuth WA, Gershenson DM, Lutgendorf SK, Aggarwal BB, Sood AK. Clin Cancer Res. 2007 Jun 1;13(11):3423-30.
Curcumin has a potent anticancer effect and is a promising new therapeutic strategy. We previously demonstrated that curcumin induced non-apoptotic autophagic cell death in malignant glioma cells in vitro and in vivo. This compound inhibited the Akt/mammalian target of rapamycin/p70 ribosomal protein S6 kinase pathway and activated the extracellular signal-regulated kinases 1/2 thereby inducing autophagy. Interestingly, activation of the first pathway inhibited curcumin-induced autophagy and cytotoxicity, whereas inhibition of the latter pathway inhibited curcumin-induced autophagy and induced apoptosis, thus augmenting the cytotoxicity of curcumin. These results imply that these two autophagic pathways have opposite effects on curcumin's cytotoxicity. However, inhibition of nuclear factor kappaB, which is the main target of curcumin for its anticancer effect, was not observed in malignant glioma cells. These results suggest that autophagy but not nuclear factor kappaB plays a central role in curcumin anticancer therapy and warrant further investigation toward application in patients with malignant gliomas. Here, we discuss the therapeutic role of two autophagic pathways influenced by curcumin.
Source: Shinojima N, Yokoyama T, Kondo Y, Kondo S. Autophagy. 2007 Nov-Dec;3(6):635-7.
Turmeric, an essential ingredient of culinary preparations of southeast Asia, contains a major polyphenolic compound, named curcumin or diferuloylmethane, which eliminates cancer cells derived from a variety of peripheral tissues. Although in vitro experiments have addressed its anti-tumor property, no in vivo studies have explored its anti-cancer activity in the brain. Oral delivery of this food component has been less effective because of its low solubility in water. We show that a soluble formulation of curcumin crosses the blood-brain barrier but does not suppress normal brain cell viability. Furthermore, tail vein injection, or more effectively, intracerebral injection through a cannula, blocks brain tumor formation in mice that had already received an intracerebral bolus of mouse melanoma cells (B16F10). While exploring the mechanism of its action in vitro we observed that the solubilized curcumin causes activation of proapoptotic enzymes caspase 3/7 in human oligodendroglioma (HOG) and lung carcinoma (A549) cells, and mouse tumor cells N18 (neuroblastoma), GL261 (glioma), and B16F10. A simultaneous decrease in cell viability is also revealed by MTT [3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide] assays. Further examination of the B16F10 cells showed that curcumin effectively suppresses Cyclin D1, P-NF-kB, Bcl(XL), P-Akt, and VEGF, which explains its efficacy in blocking proliferation, survival, and invasion of the B16F10 cells in the brain. Taken together, solubilized curcumin effectively blocks brain tumor formation and also eliminates brain tumor cells. Therefore, judicious application of such injectable formulations of curcumin could be developed into a safe therapeutic strategy for treating brain tumors.
Source: Purkayastha S, Berliner A, Fernando SS, Ranasinghe B, Ray I, Tariq H, Banerjee P. Brain Res. 2009 Feb 10.
Glioblastoma (GBM) is a highly aggressive brain tumor characterized by increased proliferation and resistance to chemotherapy and radiotherapy. Recently, a growing body of evidence suggests that glioma-initiating cells (GICs) are responsible for the initiation and recurrence of GBM. However, the factors determining the differential development of GICs remain poorly defined. In the present study, we show that curcumin, a natural compound with low toxicity in normal cells, significantly induced differentiation of GICs in vivo and in vitro by inducing autophagy. Moreover, curcumin also suppressed tumor formation on intracranial GICs implantation into mice. Our results suggest that autophagy plays an essential role in the regulation of GIC self-renewal, differentiation, and tumorigenic potential, suggesting autophagy could be a promising therapeutic target in a subset of glioblastomas. This is the first evidence that curcumin has differentiating and tumor-suppressing actions on GICs.
Source: Zhuang W, Long L, Zheng B, Ji W, Yang N, Zhang Q, Liang Z. Cancer Sci. 2012 Apr;103(4):684-90. doi: 10.1111/j.1349-7006.2011.02198.x.
Although modern treatment options for B-chronic lymphocytic leukemia (CLL) produce high response rates, virtually all patients relapse, presumably due to the persistence of minimal residual disease (MRD). Novel approaches that maintain response and therefore delay growth of MRD may ultimately improve survival outcomes. In CLL, any type of continued therapy must be not only well tolerated but also convenient to ensure compliance. There has been some exploration of rituximab as maintenance therapy in CLL; however, given its limited clinical activity as a single agent, other options need to be studied. One such agent is the immunomodulatory drug lenalidomide, which has demonstrated clinical activity both in patients with relapsed or refractory CLL and in the frontline setting. Other attractive agents being explored in the maintenance setting include epigallocatechin gallate, curcumin, and the citrus pectin-derived galectin-3 inhibitor GCS-100. These naturally occurring compounds are well tolerated, and they inhibit survival signals in the microenvironment necessary for tumor development, making them well suited for evaluation as maintenance therapy for CLL.
Source: O'Brien S, Kay NE. Clin Adv Hematol Oncol. 2011 Jan;9(1):22-31.
Cancer is primarily a disease of old age, and that life style plays a major role in the development of most cancers is now well recognized. While plant-based formulations have been used to treat cancer for centuries, current treatments usually involve poisonous mustard gas, chemotherapy, radiation, and targeted therapies. While traditional plant-derived medicines are safe, what are the active principles in them and how do they mediate their effects against cancer is perhaps best illustrated by curcumin, a derivative of turmeric used for centuries to treat a wide variety of inflammatory conditions. Curcumin is a diferuloylmethane derived from the Indian spice, turmeric (popularly called "curry powder") that has been shown to interfere with multiple cell signaling pathways, including cell cycle (cyclin D1 and cyclin E), apoptosis (activation of caspases and down-regulation of antiapoptotic gene products), proliferation (HER-2, EGFR, and AP-1), survival (PI3K/AKT pathway), invasion (MMP-9 and adhesion molecules), angiogenesis (VEGF), metastasis (CXCR-4) and inflammation (NF-kappaB, TNF, IL-6, IL-1, COX-2, and 5-LOX). The activity of curcumin reported against leukemia and lymphoma, gastrointestinal cancers, genitourinary cancers, breast cancer, ovarian cancer, head and neck squamous cell carcinoma, lung cancer, melanoma, neurological cancers, and sarcoma reflects its ability to affect multiple targets. Thus an "old-age" disease such as cancer requires an "age-old" treatment.
Source: Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Cancer Lett. 2008 Aug 18;267(1):133-64. doi: 10.1016/j.canlet.2008.03.025.